
Introduction to Interaction Overview Diagram as a
Model

Sumender Roy#1
Research Scholar
JNTU Kakinada

Dr Samuel Vara Prasada Raju#2
Prof. (SDE),

Andhra University

Abstract UML diagrams became an industry standard to
capture the system structure and behavior are considered as
well suited diagrams in model based testing. Software testing
is one of the main activities to be carried out in the software
development life cycle. It consumes more money and time,
which leads to automation that reduces the human effort in
finding bugs and errors. Automation in the last phase of
system development is similar to manual testing. In both cases
bugs are detected only after code has been complete. So
rectifications and modification of the code takes lot of time. So
testing process should be started from the beginning phase of
software development life cycle and should continue till the
last phase. Three approaches in testing are code based testing,
specification testing and model based approach. So we focus
on Model Based Approach for automatic test case generation.
In this paper we focus on Interaction overview diagram as a
suitable model that can be used in model based testing.

I. INTRODUCTION TO SOFTWARE TESTING
Software testing is a process of validating and

verifying that a computer application meets the
requirements that guided its design and development,
works as expected, can be implemented with the same
characteristics, and satisfies the needs of stakeholders.
Generally, software testing consumes thirty to fifty percent
of the software development budget, resources and time.
Software failures cost companies and consumers loose
large amount of money. The worst software failures have
already damaged reputations, impacted negatively on
financials, and caused stress to users and highlights the
continuing problems faced by the financial and banking
sector. Software failure happens only when there is
insufficient testing done for the system. In August 2011,
Honda had to recall 2 million cars due to a software failure
problem. The problem had to do with the transmission
control modules of some of its models. Among the recalled
models were the 2001 and 2002 Accord, 2001 to 2003
Civic, 2003 CRV, 2003 Pilot and 2003 Acura 3.2 TL. GM
also recalled about 50,000 units of the Cadillac SRX
crossover SUVs in June 2011 because of a software failure
that may not allow the deployment of airbags for
passengers sitting in the right rear seat in the event of an
accident.

Significant investment must be made on testing in
terms of time and effort. Organizations shouldn't measure
testing purely on cost and time but should look at the value
it can bring. According to a study it can be summarized as:
'Software is normally written by humans, humans make
mistakes, and when they make a mistake while coding, the
software is said to contain a fault or defect or bug. If the
fault is "executed", a failure may occur. Testing is the
process of detecting faults before software is made
operational. Software testing always remains a tedious,
complex, and error-prone process as a consequence of the
latest tools and technologies perpetually trying to match the
ever growing size, functionality, complexity, and
heterogeneity of software systems. The capability for
delivering high quality software under competitive pressure
and tight schedules has become an important factor for
software organizations. Spending too much time or money
on unnecessary testing can possibly result in late delivery
and wastage of resources. It is important to remember, if
software testing can take a company to its business heights
it is the same testing (if not conducted properly) that can
ruin not only its reputation but the entire company.

II. MODEL BASED TESTING

Traditionally the testing process is based on manual
work. Manual testing is a process carried out to find the
defects. In this method that tester plays the lead role and
end user verifies all features of the application. It is a basic
type of testing which helps to find bugs in the software. It
is preliminary testing needs to be carried out prior to start
automating the test cases. For manual testing it is not
necessary to have knowledge any testing tools. But
according to software testing fundamentals complete
automation is not possible. Automation in testing has
evolved due to the limitations of manual testing. Running
the test cases repeatedly is not possible in manual testing
where as it is easy in automated testing. Manual testing is
not suitable for changing environments where as
automation in testing is very useful when the code
frequently changes. The role of tester is more in manual
testing and less in automated testing. Manual testing is
slower in nature and automation is runs test cases
significantly faster than human resources.

Sumender Roy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1705-1710

www.ijcsit.com 1705

An advanced approach used now days in testing is
model-based testing (MBT) where test cases are generated
from pre existing models of the system under test. The
model under test need not be a formal specification of the
system and can merely be a representation of some aspects
of the requirements to be tested. A model is a description of
a system's behavior. Behavior can be described in terms of
input sequences, actions, conditions, output, and flow of
data from input to output. It should be practically
understandable and can be reusable; shareable must have
precise description of the system under test. Model based
testing is a testing technique where run time behavior of
software under test is checked against predictions made by
a formal specification or model. In other means, it
describes how system behaves in response to an action
determined by a 333model. Model-based testing is a variant
of testing that relies on explicit behavior of models that
encode the intended behavior of a system and possibly the
behavior of its environment. Pairs of input and output of
the model of the implementation are interpreted as test
cases for this implementation: the output of the model is the
expected output of the system under test (SUT). In terms of
model-based testing, the necessity to validate the model
implies that the model must be simpler than the SUT, or at
least easier to check, modify and maintain. Otherwise, the
efforts of validating the model would equal the efforts of
validating the SUT. On the other hand, the model must be
sufficiently precise to serve as a basis for the generation of
“meaningful” test cases. A model-based testing process
must take into account the involved abstractions, and it is
likely that omissions in the model mean that these omitted
parts cannot be tested on the grounds of the model in
question.

Over the last two decades the popularity of object

oriented programming in software engineering increased
the growth of testing techniques named as model based
testing. MBT is a software testing method is used to
generate test cases entirely or partially from a behavior
model. The test cases generated from this model are
abstract test cases which are not executable. MBT is
generally assumed as black box testing because the test
cases are generated from models instead from the source
code. MBT is a technique for automatic generation of test
cases using models extracted from software artifacts. MBT
is a simple approach that is based on test case generation
and test result evaluation. Fundamental tasks in model
based testing involve gathering the necessary information
to build a model, generating tests from the model, and
evaluating the test generated from the model. Model is a
depiction of the behavior of software system. Behavior is
defined in terms of input, output, actions, conditions,
control flow, and data flow in the software system. There
exist many models that describe different aspects of
software behavior. Some of them are finite state machines,
state charts, UML, markov chains, petri nets, and decision
tables.

III. UML MODELS
Unified modeling language called as UML was

initially developed by James Rumbaugh and Grady Booch.
The evolution of UML began with the need for a modeling
language in which you can develop models of objet
oriented software systems. During the mid 70’s and late
1980’s, three prominently used modeling languages in
industry includes Booch’s Booch’ 93, Jackob’s Object
Oriented Software Engineering, Rumbaugh’s Object
Modeling Technique. Due to the availability of several
modeling languages in the industry, lead to the invention of
a standard language for modeling. For the first time
Booch’s 93, OOSE, and OMT were unified and released as
UML version 0.9.software organizations such as HP, I-
Logix, IBM, Microsoft, Oracle, Rational software, and
Unisys formed as the UML consortium and presented a
version UML1.1. OMG which is a nonprofit organization
standardized UML1.1 and took the responsibility of
maintaining the versions of UML.

UML is now developed and administered by
Object Management Group is used to create well
documented models. Latest versions of UML include UML
2.0 in 2005, UML 2.4.1. in August 2011, in process version
UML 2.5 in October 2012. The new diagrams that are
added to the previous list include Model Diagram,
Manifestation diagram, and Network architecture diagram.
The latest version of UML reduces redundancy by
specifying models in the form of human readable elements
and increases clarity by providing detailed explanation of
the semantics. The 4 layer architecture has been removed
by OMG as it was rarely used. With invent of Model based
testing UML can be defined as a diagram and a model,
where a model represents all relations and contains
documentation where as it can be viewed as a diagram or a
graphical representation. UML is used to study both the
structural and behavioral semantics of a system. Structural
semantics specify the meaning of the UML structural
model elements. Behavioral semantics define the meaning
of UML behavioral model elements.

The main advantage of using UML is to specify,
visualize, construct, and document the artifacts of software
systems. It has become a powerful tool that allows
developers to construct high quality applications. The
simplicity of UML lies as it can be defined as a general
purpose language that uses graphical notations to create an
abstract model. This abstract model is called as UML
model. UML allows a standard way to write a system's
blueprints, including conceptual things such as business
processes and system functions as well as concrete things
such as programming language statements, database
schemas, and reusable software components." UML
diagrams are divided in to two sets namely structural
modeling diagrams and behavioral modeling diagrams.
Structure diagrams define the static architecture of a model.
They are used to model the things that make up a model
like classes, objects, interfaces, and physical components.
Behavior diagrams capture the varieties of interaction and
instantaneous state within a model as it executes over time.
The following is the classification of the diagrams.

Sumender Roy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1705-1710

www.ijcsit.com 1706

Figure 1. The Taxonomy of UML 2.5 Structure and
Behavior Diagrams

Table 1. UML2.5 diagrams

UML Diagram Description

Class Diagram

Class Diagrams describes the classes of the
system, their interrelationships including
inheritance, aggregation, and association, and
the operations and attributes of the classes.

Object
Diagram

Object diagram represents a specific instance
of a class diagram at a certain moment in time,
and are useful in exploring “real world”
examples of objects and the relationships
between them

Component
Diagram

A component diagram does not describe the
functionality of the system but it describes the
components used to make those functionalities
and to show the relationship between different
components in a system.

Composite
Structure
Diagram

Composite structure diagrams are used to
explore internal structure of a classifier,
including its interaction points to other parts of
the system collaborating over communications
links.

Deployment
Diagram

Deployment diagrams describe the physical
deployment of the hardware components where
software components are deployed.

Package
Diagram

Package diagrams are used to reflect the
organization of packages and their elements is
composed only of packages and the
dependencies between them where a package is
a UML construct that enables how to organize
model elements, such as use cases or classes,
into groups.

UML Diagram Description

Profile
Diagram

A profile diagram allows UML to be extended
for use with a particular programming platform
such as Microsoft's .NET framework or the
Java Enterprise Edition platform, or to model
systems intended for use in a particular domain
like medicine, financial services, some
specialized engineering fields.

Model
Diagram

UML model diagram shows some abstraction
or specific view of a system, to describe
architectural, logical, or behavioral aspects of
the system.

Internal
Structure
Diagram

Internal Structure Diagram shows internal
structure of a classifier - a decomposition of
the classifier into its properties, parts and
relationships.

Collaboration
Use Diagram

Collaboration Use Diagram describes objects
in a system cooperating with each other to
produce some behavior of the system.

Manifestation
Diagram

Manifestation diagrams are used to show
manifestation or implementation of
components by artifacts and internal structure
of artifacts.

Network
Architecture
Diagram

Network Architecture Diagrams are used to
describe logical or physical network
architecture of the system.

Activity
Diagram

An activity diagram is used to display the
sequence of activities in a system. Activity
diagrams show the workflow from a start point
to the finish point detailing all decision paths
that exist in the activity.

Use case
Diagram

A use case diagram shows the interaction
between the system and entities external to the
system. It captures the overview the usage
requirements for a system.

State Machine
Diagram

A state machine diagram models the behavior
of a single object, various states that an object
may be in and the transitions between those
states during its lifetime in response to events.

Interaction
Diagram

Interaction diagrams are models that describe
how a group of objects collaborate with a
single use-case by describing the objects and
the messages that are passed between these
objects within the use-case.

Sequence
Diagram

UML sequence diagrams model the flow of
logic within a system and shows objects as
lifelines running down the page, with their
interactions over time represented as messages
drawn as arrows from the source lifeline to the
target lifeline.

Timing
Diagram

Timing Diagram shows interactions when a
primary purpose of the diagram is to reason
about time. Timing diagrams focus on
conditions changing within and among lifelines
along a linear time axis.

Sumender Roy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1705-1710

www.ijcsit.com 1707

UML Diagram Description

Communicatio
n Diagram

Communication Diagrams focuses on the
interaction between lifelines where the
architecture of the internal structure and how
this corresponds with message passing. They
focus on collaboration of objects rather than
the time sequence.

Interaction
Overview
Diagram

Interaction overview diagrams focus on the
overview of the flow of control of the
interactions of a system where the nodes are
interactions or interaction uses.

Information
Flow Diagram

Information Flow Diagrams shows exchange
of information between system entities at some
high levels of abstraction. They describe
circulation of information through a system by
representing aspects of models.

Behavioral
State Machine
Diagram

Behavioral State Machine Diagrams describes
the discrete behavior of a part of designed
system through finite state transitions.

Protocol State
Machine
Diagram

Protocol State Machine Diagrams describes the
usage protocol or a lifecycle of some classifier

IV. BASIC CONCEPTS OF INTERACTION OVERVIEW

DIAGRAM
Interaction overview diagrams give an overview

of interaction diagrams that include sequence diagram,
communication diagram, timing diagram, and interaction
overview diagram. Sequence diagrams emphasize on time
sequence of messages and collaboration diagram
emphasizes on the structural organization of the objects that
send and receive messages. To combine all together IOD
captures the dynamic behavior of a system, message flow
in the system, sequence in which the messages are flowing,
structural organization of the objects. Over all UML IOD
presents execution path through an application. It
represents the logical interaction between the interaction
diagrams and the control flows in between the set of
interaction diagrams. These diagrams are a variant of
Activity diagrams in which the nodes represent interaction
diagrams. Along with the notations used in Activity
diagrams, interaction elements and interaction occurrence
elements are used in IOD. Interaction elements display an
inline interaction diagram, which can be a sequence
diagram, communication diagram, timing diagram, or
interaction overview diagram. Interaction occurrence
elements are references to an existing interaction diagram
in a rectangular frame, where as interaction occurrence
elements are visually represented by a frame, with “ref” in
the frame’s title space or top left corner. The diagram name
is indicated in the frame contents. These frames indicate the
type of diagram, “sd” for sequence diagram, “td” for timing
diagram, “cd” for communication or collaboration diagram,
and “iod” for interaction overview diagram. Messages and
Activity Partitions are not directly included in IOD, they
contain more overview than a detail activity diagram. So
these diagrams are suitable only when an overview is
desired. Some of the nodes used in Interaction Overview
diagram are as follows.

Table2. Nodes in UML Interaction Overview Diagram.

Node type Description

Action

Action is an individual step within an
activity. An action may have incoming
and outgoing edges. Action will not begin
until all input conditions are satisfied.

Initial Node

Indicates the starting point of an activity.
When the activity starts, a token flows
from the initial node. An activity can have
several initial nodes.

Activity Final Node

Indicates the ending point of an activity.
When a token arrives, the activity
terminates. It denotes the end of all
control flows in the activity. An activity
can have more than one activity final
nodes.

Decision Node

Indicates a conditional branch point in an
activity. A decision node has one input
and two or more outputs. An incoming
token is presented to the multiple
outgoing edges and it emerges on just one
of the outgoing edges.

Guard

A condition which is associated with the
outgoing edges of a decision node which
specifies whether a token can flow along
a connector.

Merge Node

Required to combine flows that were split
with a decision node. Merge node has two
or more inputs and one output. A token
from one incoming edge is accepted
among multiple alternate flows.

Comment
Provides additional information about
elements to which it is linked.

Activity

Activity describes the highest level of
behavior in an activity diagram. It is a
container element that contains actions,
control flows and other elements that
make up the activity.

Fork Node

Fork node splits a single flow into
concurrent flows. It has one incoming and
multiple outgoing edges. Each incoming
token produces a token on each outgoing
edge.

Join Node

Join node synchronizes multiple flows.
Combines concurrent flows into a single
flow. It has multiple incoming edges and
one outgoing edge.

Object Node
Object node indicates an instance of a
particular state or a point in the activity.

Input Pin

Input pin is used to represent the input
parameters on an action. It holds input
values that are received from other
actions.

Output Pin
Output pin is used to represent the output
parameters on an action. It holds output
values that an action produces.

Activity Parameter
Node

Activity parameter nodes specify the input
and output parameters of the activity.

Control Flow
Control flow is an edge the shows the
movement of control from one node to
another.

Object Flow
Object flow is a path along which objects
or data can pass.

Sumender Roy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1705-1710

www.ijcsit.com 1708

Node type Description

Constraint
Constraint is a condition expressed in
natural language to declare semantics of
an element.

Lifeline
Lifelines represent either roles or object
instances that participate in the sequence
being modeled.

Messages

Messages depict work flow or activity
over time from element to element.
Allowed messages are complete, lost or
found, synchronous or asynchronous, call
or signal.

Gate

A gate is a message end or a connection
point for relating a message outside the
interaction fragment with a message
inside the interaction fragment.

Execution
Occurrence

Execution Occurrence represent the time
an object needs to complete a task.

Interaction
fragment

Interaction fragment represents an
interaction.

State Invariant

A state invariant is an interaction
fragment which represents a runtime
constraint on the participants of the
interaction.

Interaction use
Interaction use is an interaction fragment
which allows calling another interaction.

Destruction
occurrence

Destruction occurrence is a message
occurrence which represents the
destruction of the instance described by
the lifeline.

State Timeline
A state or condition timeline represents
the set of valid states and time

Duration
Constraint

Duration constraint is an interval
constraint that refers to a duration interval
is used to determine whether the
constraint is satisfied or not.

Time Constraint
Time constraint is an interval constraint
that refers to a time interval to determine
whether the constraint is satisfied or not.

Constraint

A constraint is a restriction expressed in
natural language text or in a machine
readable language to specify the
semantics of an element.

Frame
A frame in interaction overview diagram
encloses other forms of interaction
diagrams

Many researchers developed different techniques to
generate tests from different UML diagrams [4] [5] [7] [8].
Abdurazik and Offut et al. [6] developed a technique to
generate test cases from UML state diagrams. Kim et al. [9]
present a approach to generate test cases from UML
activity diagram. Sharma et al. [1] generated test cases
from Sequence diagrams. Swain et al. [3] have proposed a
method for generating the test cases using sequence
diagram and activity diagram. Nayak et al. [10] generated
test cases using Sequence diagrams. Samuel et al. [2] in
their work they proposed a method for generating test cases
from Sequence diagrams. Abdurazik and Offut [11]
developed a technique to generate test cases from UML
Collaboration diagrams.

V. CASE STUDY:ONLINE SHOPPING INTERACTION OVERVIEW

DIAGRAMS [12]
The following is a simple case study of Online

shopping interactive overview diagram. In online shopping
case study customer tries to find either by searching or
browsing for the item, whether an item is present or not, if
the item is present customer views the item, if the customer
likes the item adds it to the cart, if the customer dislikes an
item removes the item. It contains basic activity nodes like
initial node, activity final node, decision node, merge node
and it contains seven interaction use nodes. they refer to
seven sequence diagrams namely search items, browse
items, update cart, add item to cart, remove item from cart,
view item, and check out.

Figure 2. Online shopping Interaction Overview diagram

VI. CONCLUSION

This paper proposes an overview of how UML 2.x
interaction overview diagram can be used as a model in
Model Based Testing. From the reported work, it is
understood how actually a UML interaction diagram
contains and its similarity to Activity diagram has been
discussed.

Sumender Roy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1705-1710

www.ijcsit.com 1709

REFERENCES
[1] M. Sarma, D. Kundu and R. Mall, “Automatic Test Case Generation

from UML Sequence Diagrams”, In IEEE 15th International
Conference on Advanced Computing and Communications, pp. 60-
65, 2007.

[2] P. Samuel and A. T. Joseph, “Test Sequence Generation from UML
Sequence Diagrams”, , In IEEE Ninth ACIS International
Conference on Software Engineering, Artificial Intelligence,
Networking, and Parallel/Distributed Computing, pp. 879-887, 2008.

[3] S. K. Swain and D. P. Mohapatra , “Test Case Generation from
Behavioral UML Models ”, International Journal of Computer
Appli-cations,Volume-6, pp. 5-11, September 2010.

[4] Emanuela G. Cartaxo, Francisco G. O. Neto and Patricia D. L.
Machado, “Test Case Generation by means of UML Sequence
Diagrams and Labeled Transition Systems ”, International Journal of
Computer Applications,pp. 1292-1297, 2007.

[5] L. Briand and Y. Labiche, “A UML-Based Approach to System
Testing”, Journal of Software and Systems Modeling, Springer
Verlag, Volume-1, pp. 10-42, 2002.

[6] A. Abdurazik and J. Ofut, “Generating Tests from UML
Specifications ”, In the Proceedings of 2nd International Conference
on Unified Modeling Language (UML), Fort Collins, CO, 1999.

[7] S. K. Swain, D. P. Mohapatra and R. Mall , “Test case generation on
use case and sequence diagram ”, International Journal of Software
Engineering, Volume-3, pp. 2152, 2010.

[8] F. Fraikin, and T. Leonhardt, “SEDITEC-testing based on sequence
diagrams”, In Proceedings 17th IEEE International Conference on
ASE,pp. 261266, 2002.

[9] H. Kim, S. Kang, J. Baik, and I. Ko. , “Test cases generation from
UML activity diagrams Application ”, Eighth ACIS International
Conference on Software Engineering, Artificial Intelligence,
Networking, and Parallel/Distributed Computing, pages 556 561,
2007.

[10] A. Nayak and D. Samanta , “Automatic test data synthesis using
UML sequence diagram ”, Journal of Object Technology,Volume-
09, pp. 75-104, 2010.

[11] A. Abdurazik and J. Ofut, “Using UML Collaboration Diagrams for
Static Checking and Test Generation ”, In the Proceedings of UML
2000 — The Unified Modeling Language, Springer Volume 1939 ,
pp 383-395 Date: 28 September 2001

[12] http://www.uml-diagrams.org

Sumender Roy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1705-1710

www.ijcsit.com 1710

